ASSESSING THE MOBILE COMPUTING PILOT PROGRAM: A COLLEGE-WIDE INITIATIVE

Copyright Joni Spurlin and Kathy Mayberry, North Carolina State University, 2006. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of the authors. To disseminate otherwise or to republish requires written permission from the authors.
ASSESSING THE MOBILE COMPUTING PILOT PROGRAM: A COLLEGE-WIDE INITIATIVE

NC State University
Joni E. Spurlin, Ph.D.
Kathy Mayberry
Objectives

• To evaluate the impact of teaching with wireless laptops in a collaborative setting on student performance, specifically related to problem solving.

• To evaluate the impact of teaching with wireless laptops in a collaborative setting on faculty workload, pedagogy, and amount of material delivered.

• To identify the technical challenges using wireless technology in the classroom have for students, faculty, and technical staff.

• To measure satisfaction of students, faculty and technical staff with the use of this technology in academic settings.
Computer Ownership Among Incoming College of Engineering Freshmen

- Percentage of students bringing computers
- Percentage of students bringing laptops

Year	Percent
1998 | 75
1999 | 85
2000 | 90
2001 | 91.6
2002 | 95.9
2003 | 98
2004 | 97.4
2005 | 98.7

1998-2005
Courses Involved

<table>
<thead>
<tr>
<th></th>
<th>General Ed</th>
<th>Engineering Courses</th>
<th>Totals</th>
</tr>
</thead>
</table>
| | • Introduction to Engineering
• Introduction to Computing
• Foundations of Technical Graphics
• Calculus I
• Calculus II
• Calculus III | • Bio Engr:
• Computer Methods in Bio Engr
• Bioinstrumentation
• Intro to Surface Water Quality Modeling
• Watershed Monitoring
• Computer Methods Biomedical
• Chemical Engr:
• Chemical Process Principles
• Chemical Engineering Lab I
• Chemical Engineering Lab II
• Chemical Engineering Design I
• **Computer Science:** Programming Java | |
| **Fall 2001** | 6 | 0 | 6 |
| **Fall 2002** | 8 | 0 | 8 |
| **Fall 2003** | 7 | 3 | 10 |
| **Fall 2004** | 6 | 10 | 16 |
Reason Chose Specific Laptop

- Features
- Cost
- Recommended
- Brand
- Weight

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell</td>
<td>76%</td>
<td>38%</td>
<td>21%</td>
</tr>
<tr>
<td>IBM</td>
<td>9%</td>
<td>41%</td>
<td>59%</td>
</tr>
<tr>
<td>Other</td>
<td>16%</td>
<td>21%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Fall 2002 | Fall 2003 | Fall 2004
Assessment Methods

• Direct Assessment:
 – Rubrics
 – Tests
 – Student course work

• Indirect Assessment:
 – Faculty surveys three times per semester
 – Student surveys end of semester
20 out of 32 (62%) faculty said preparation time for the laptop section was increased because of modifications. Modifications included:

- Adding the Internet and problem-solving during class time.
- Adding more complex, real world, or technically challenging problems to class time activities.
- Incorporating appropriate software into the classroom activities (e.g. MAPLE, Excel, MATLAB, etc).
- Including teamwork and cooperative or pair learning as part of their pedagogy.
Maple®, a modern engineering tool for visualizing concepts in calculus used to solve real world problems. In laptop sections students "Let Maple® do the sketching". As a result, they have the advantage of seeing the surfaces immediately in front of them as the instructor discusses the process.

<table>
<thead>
<tr>
<th>TEST Questions</th>
<th>Regular Section</th>
<th>Laptop Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two integrals - one used substitution and the other used integration by parts.</td>
<td>85%</td>
<td>87%</td>
</tr>
<tr>
<td>Convergence of a series</td>
<td>80%</td>
<td>76%</td>
</tr>
<tr>
<td>Students’ graphic understanding of the relationships among the integral, right sums and left sums for increasing functions</td>
<td>79%</td>
<td>94%</td>
</tr>
<tr>
<td>Graph the region between two curves and find the area between them. Then revolve this region about a line to produce a solid of revolution - find the volume of this solid.</td>
<td>69%</td>
<td>79%</td>
</tr>
</tbody>
</table>
Students’ Opinions About Maple®

<table>
<thead>
<tr>
<th>Regular Sections</th>
<th>Laptop Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>• “Maple is a waste of my time.”</td>
<td>• “At first, maple was aggravating. But after I learned how to use it, it helped my comprehension of the material.”</td>
</tr>
<tr>
<td>• “Made the material more confusing.”</td>
<td>• “I really enjoyed having MAPLE on my computer. It made the class much easier not to have to head off to separate labs.”</td>
</tr>
<tr>
<td>• “It is horrible way to submit homework.”</td>
<td>• “It allowed us to work with more complex problems and find solutions faster.”</td>
</tr>
<tr>
<td>• “It hurt my learning.”</td>
<td>• “Maple is a pain to do, but I like the program.”</td>
</tr>
<tr>
<td>• “I hate Maple! It is quite positively the absolute worst program on campus.”</td>
<td></td>
</tr>
</tbody>
</table>
Enhanced Problem Solving

• Faculty in Calculus, Computer Science and other courses have used the laptop program to incorporate the lab section of the course into the lecture portion.

• Assessment results show that students had significant gains over non-laptop sections in regard to:
 • the visualization of the course content,
 • several dimensions of problem solving,
 • graphics and computer-aided drawing,
 • programming was improved in several sections.
Increased Student Engagement

- 73% ... laptops improved communication with classmates.
- 96% ... laptop gave them freedom to work any place, any time.
- 87% ... classes were positively affected by integrating laptops.
- 84% ... experience increased comfort in using their laptops.
- 85% ... laptops make learning more enjoyable.
- 84% ... in-class use of instructional technology stimulated learning.
- 99%prefer to use own computers than lab computers
Increased Course Pace & Variety: Faculty Perception

- Increased Pace
- Greater Variety
- Increased Depth

Fall 2003
Spr 2004
Fall 2004
Enhanced Learning: Students and Faculty Agree

<table>
<thead>
<tr>
<th></th>
<th>Laptop Students: % “Agree” Fall 2003</th>
<th>Laptop Students: % “Agree” Fall 2004</th>
<th>Faculty: % “Agree” Fall 2003</th>
<th>Faculty: % “Agree” Fall 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptops in class enhance learning</td>
<td>77%</td>
<td>77%</td>
<td>77%</td>
<td>79%</td>
</tr>
<tr>
<td>Laptops are a distraction</td>
<td>12%</td>
<td>19%</td>
<td>15%</td>
<td>21%</td>
</tr>
<tr>
<td>Laptops make learning more enjoyable</td>
<td>90%</td>
<td>86%</td>
<td>62%</td>
<td>79%</td>
</tr>
<tr>
<td>Use of instructional technology made learning more stimulating</td>
<td>84%</td>
<td>85%</td>
<td>69%</td>
<td>77%</td>
</tr>
<tr>
<td>Laptops improved communication with instructor</td>
<td>61%</td>
<td>54%</td>
<td>23%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Decreased Technical Challenges

Faculty
• At the beginning of the semester, 60% spent time on technical issues.
• At the end of the semester,
 – 29% did not change plans due to technical difficulties
 – 32% changed plans once a month
 – 26% changed plans more than once a month
 – 72% said technical issues were solved in a timely manner

Empowered Students to solve own problems
• Developed Course: students installed software and learned about technical issues.
• The number of logged help calls for the laptop program decreased by more than half after developed this course.
Decreased Technical Challenges

Laptop Cart
- Problem: Battery Life Dictated Scheduling Use
- Electricity: With 30 laptops/cart, used 30 amps
 - Needed dedicated circuit just for cart

Wireless Connectivity
- ComTech added newer, faster standards:
 - Increased network speed, increased number that could be connected via wireless in a given area
 - Resulted in fewer problems due to better login management, an increase in the number of access points, and a diversified mix of wireless standards.
Conclusions

• Students are bringing more IBM Laptops than Dell Laptops; other brands are gaining popularity.

• The main reason students chose their computers was the features of the computer. Cost, recommendations and brand loyalty were next. Few based decisions on weight or advertisement.

• Technical staff dedicated to program important element to address challenges.
Conclusions

• Students and faculty had positive attitudes about the use of technology in courses.

• Assessing the impact of technology on student learning needed to wait until the faculty had further developed their courses using the technology.
 – Faculty support (from experienced peers, pedagogical consultants, graduate students) is vital for genuine course transformation.

• In courses where faculty had sound pedagogical use of technology, found enhanced learning.